Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493344

RESUMO

Venomous organisms have independently evolved the ability to produce toxins 101 times during their evolutionary history, resulting in over 200 000 venomous species. Collectively, these species produce millions of toxins, making them a valuable resource for bioprospecting and understanding the evolutionary mechanisms underlying genetic diversification. RNA-seq is the preferred method for characterizing toxin repertoires, but the analysis of the resulting data remains challenging. While early approaches relied on similarity-based mapping to known toxin databases, recent studies have highlighted the importance of structural features for toxin detection. The few existing pipelines lack an integration between these complementary approaches, and tend to be difficult to run for non-experienced users. To address these issues, we developed DeTox, a comprehensive and user-friendly tool for toxin research. It combines fast execution, parallelization and customization of parameters. DeTox was tested on published transcriptomes from gastropod mollusks, cnidarians and snakes, retrieving most putative toxins from the original articles and identifying additional peptides as potential toxins to be confirmed through manual annotation and eventually proteomic analysis. By integrating a structure-based search with similarity-based approaches, DeTox allows the comprehensive characterization of toxin repertoire in poorly-known taxa. The effect of the taxonomic bias in existing databases is minimized in DeTox, as mirrored in the detection of unique and divergent toxins that would have been overlooked by similarity-based methods. DeTox streamlines toxin annotation, providing a valuable tool for efficient identification of venom components that will enhance venom research in neglected taxa.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Peçonhas/genética , Peçonhas/química , Proteômica , Toxinas Biológicas/genética , Serpentes , Peptídeos , Transcriptoma
2.
J Mol Evol ; 91(6): 837-853, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962577

RESUMO

Venomous marine gastropods of the family Conidae are among the most diversified predators in marine realm-in large due to their complex venoms. Besides being a valuable source of bioactive neuropeptides conotoxins, cone-snails venoms are an excellent model for molecular evolution studies, addressing origin of key innovations. However, these studies are handicapped by scarce current knowledge on the tissues involved in venom production, as it is generally assumed the sole prerogative of the venom gland (VG). The role of other secretory glands that are present in all Conus species (salivary gland, SG) or only in some species (accessory salivary gland, ASG) remains poorly understood. Here, for the first time, we carry out a detailed analysis of the VG, SG, and ASG transcriptomes in the vermivorous Conus virgo. We detect multiple transcripts clusters in both the SG and ASG, whose annotations imply venom-related functions. Despite the subsets of transcripts highly-expressed in the VG, SG, and ASG being very distinct, SG expresses an L-, and ASG-Cerm08-, and MEFRR- superfamily conotoxins, all previously considered specific for VG. We corroborate our results with the analysis of published SG and VG transcriptomes from unrelated fish-hunting C. geographus, and C. striatus, possibly fish-hunting C. rolani, and worm-hunting Conus quercinus. In spite of low expression levels of conotoxins, some other specific clusters of putative venom-related peptides are present and may be highly expressed in the SG of these species. Further functional studies are necessary to determine the role that these peptides play in envenomation. In the meantime, our results show importance of routine multi-tissue sampling both for accurate interpretation of tissue-specific venom composition in cone-snails, and for better understanding origin and evolution of venom peptides genes.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/genética , Caramujo Conus/metabolismo , Peçonhas , Conotoxinas/genética , Conotoxinas/metabolismo , Perfilação da Expressão Gênica , Peptídeos/metabolismo
3.
Mar Biotechnol (NY) ; 25(6): 997-1019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864760

RESUMO

Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.


Assuntos
Crassostrea , Animais , Crassostrea/metabolismo , Água do Mar , Concentração de Íons de Hidrogênio , Biomineralização , Dióxido de Carbono/metabolismo
4.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494290

RESUMO

The diversity of venomous organisms and the toxins they produce have been increasingly investigated, but taxonomic bias remains important. Neogastropods, a group of marine predators representing almost 22% of the known gastropod diversity, evolved a wide range of feeding strategies, including the production of toxins to subdue their preys. However, whether the diversity of these compounds is at the origin of the hyperdiversification of the group and how genome evolution may correlate with both the compounds and species diversities remain understudied. Among the available gastropods genomes, only eight, with uneven quality assemblies, belong to neogastropods. Here, we generated chromosome-level assemblies of two species belonging to the Tonnoidea and Muricoidea superfamilies (Monoplex corrugatus and Stramonita haemastoma). The two obtained high-quality genomes had 3 and 2.2 Gb, respectively, and 92-89% of the total assembly conformed 35 pseudochromosomes in each species. Through the analysis of syntenic blocks, Hox gene cluster duplication, and synonymous substitutions distribution pattern, we inferred the occurrence of a whole genome duplication event in both genomes. As these species are known to release venom, toxins were annotated in both genomes, but few of them were found in homologous chromosomes. A comparison of the expression of ohnolog genes (using transcriptomes from osphradium and salivary glands in S. haemastoma), where both copies were differentially expressed, showed that most of them had similar expression profiles. The high quality of these genomes makes them valuable reference in their respective taxa, facilitating the identification of genome-level processes at the origin of their evolutionary success.


Assuntos
Evolução Molecular , Gastrópodes , Duplicação Gênica , Genoma , Venenos de Moluscos , Gastrópodes/classificação , Gastrópodes/genética , Genoma/genética , Animais , Cromossomos/genética , Genes Homeobox , Sintenia/genética , Transcriptoma/genética , Venenos de Moluscos/genética
5.
Mar Biotechnol (NY) ; 25(1): 83-99, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417051

RESUMO

The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.


Assuntos
Mercenaria , Animais , Mercenaria/genética , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Ecossistema , Dióxido de Carbono/farmacologia
6.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555707

RESUMO

Seawater pH and carbonate saturation are predicted to decrease dramatically by the end of the century. This process, designated ocean acidification (OA), threatens economically and ecologically important marine calcifiers, including the northern quahog (Mercenaria mercenaria). While many studies have demonstrated the adverse impacts of OA on bivalves, much less is known about mechanisms of resilience and adaptive strategies. Here, we examined clam responses to OA by evaluating cellular (hemocyte activities) and molecular (high-throughput proteomics, RNASeq) changes in hemolymph and extrapallial fluid (EPF-the site of biomineralization located between the mantle and the shell) in M. mercenaria continuously exposed to acidified (pH ~7.3; pCO2 ~2700 ppm) and normal conditions (pH ~8.1; pCO2 ~600 ppm) for one year. The extracellular pH of EPF and hemolymph (~7.5) was significantly higher than that of the external acidified seawater (~7.3). Under OA conditions, granulocytes (a sub-population of hemocytes important for biomineralization) were able to increase intracellular pH (by 54% in EPF and 79% in hemolymph) and calcium content (by 56% in hemolymph). The increased pH of EPF and hemolymph from clams exposed to high pCO2 was associated with the overexpression of genes (at both the mRNA and protein levels) related to biomineralization, acid-base balance, and calcium homeostasis, suggesting that clams can use corrective mechanisms to mitigate the negative impact of OA.


Assuntos
Mercenaria , Transcriptoma , Animais , Água do Mar/química , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Biomineralização , Proteômica , Dióxido de Carbono/metabolismo , Mercenaria/metabolismo
7.
Evol Appl ; 15(11): 1730-1748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426129

RESUMO

The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.

8.
Front Immunol ; 13: 838530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273613

RESUMO

Circulating hemocytes in the hemolymph represent the backbone of innate immunity in bivalves. Hemocytes are also found in the extrapallial fluid (EPF), the space delimited between the shell and the mantle, which is the site of shell biomineralization. This study investigated the transcriptome, proteome, and function of EPF and hemolymph in the hard clam Mercenaria mercenaria. Total and differential hemocyte counts were similar between EPF and hemolymph. Overexpressed genes in the EPF were found to have domains previously identified as being part of the "biomineralization toolkit" and involved in bivalve shell formation. Biomineralization related genes included chitin-metabolism genes, carbonic anhydrase, perlucin, and insoluble shell matrix protein genes. Overexpressed genes in the EPF encoded proteins present at higher abundances in the EPF proteome, specifically those related to shell formation such as carbonic anhydrase and insoluble shell matrix proteins. Genes coding for bicarbonate and ion transporters were also overexpressed, suggesting that EPF hemocytes are involved in regulating the availability of ions critical for biomineralization. Functional assays also showed that Ca2+ content of hemocytes in the EPF were significantly higher than those in hemolymph, supporting the idea that hemocytes serve as a source of Ca2+ during biomineralization. Overexpressed genes and proteins also contained domains such as C1q that have dual functions in biomineralization and immune response. The percent of phagocytic granulocytes was not significantly different between EPF and hemolymph. Together, these findings suggest that hemocytes in EPF play a central role in both biomineralization and immunity.


Assuntos
Anidrases Carbônicas , Mercenaria , Animais , Biomineralização , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Hemócitos , Mercenaria/genética , Mercenaria/metabolismo , Proteoma/metabolismo , Proteômica , Transcriptoma
9.
BMC Genomics ; 23(1): 192, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260071

RESUMO

BACKGROUND: The hard clam Mercenaria mercenaria is a major marine resource along the Atlantic coasts of North America and has been introduced to other continents for resource restoration or aquaculture activities. Significant mortality events have been reported in the species throughout its native range as a result of diseases (microbial infections, leukemia) and acute environmental stress. In this context, the characterization of the hard clam genome can provide highly needed resources to enable basic (e.g., oncogenesis and cancer transmission, adaptation biology) and applied (clam stock enhancement, genomic selection) sciences. RESULTS: Using a combination of long and short-read sequencing technologies, a 1.86 Gb chromosome-level assembly of the clam genome was generated. The assembly was scaffolded into 19 chromosomes, with an N50 of 83 Mb. Genome annotation yielded 34,728 predicted protein-coding genes, markedly more than the few other members of the Venerida sequenced so far, with coding regions representing only 2% of the assembly. Indeed, more than half of the genome is composed of repeated elements, including transposable elements. Major chromosome rearrangements were detected between this assembly and another recent assembly derived from a genetically segregated clam stock. Comparative analysis of the clam genome allowed the identification of a marked diversification in immune-related proteins, particularly extensive tandem duplications and expansions in tumor necrosis factors (TNFs) and C1q domain-containing proteins, some of which were previously shown to play a role in clam interactions with infectious microbes. The study also generated a comparative repertoire highlighting the diversity and, in some instances, the specificity of LTR-retrotransposons elements, particularly Steamer elements in bivalves. CONCLUSIONS: The diversity of immune molecules in M. mercenaria may allow this species to cope with varying and complex microbial and environmental landscapes. The repertoire of transposable elements identified in this study, particularly Steamer elements, should be a prime target for the investigation of cancer cell development and transmission among bivalve mollusks.


Assuntos
Mercenaria , Animais , Cromossomos , Elementos de DNA Transponíveis/genética , Mercenaria/genética , América do Norte , Retroelementos
10.
Mob DNA ; 12(1): 24, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715903

RESUMO

BACKGROUND: With the expansion of high throughput sequencing, we now have access to a larger number of genome-wide studies analyzing the Transposable elements (TEs) composition in a wide variety of organisms. However, genomic analyses often remain too limited in number and diversity of species investigated to study in depth the dynamics and evolutionary success of the different types of TEs among metazoans. Therefore, we chose to investigate the use of transcriptomes to describe the diversity of TEs in phylogenetically related species by conducting the first comparative analysis of TEs in two groups of polychaetes and evaluate the diversity of TEs that might impact genomic evolution as a result of their mobility. RESULTS: We present a detailed analysis of TEs distribution in transcriptomes extracted from 15 polychaetes depending on the number of reads used during assembly, and also compare these results with additional TE scans on associated low-coverage genomes. We then characterized the clades defined by 1021 LTR-retrotransposon families identified in 26 species. Clade richness was highly dependent on the considered superfamily. Copia elements appear rare and are equally distributed in only three clades, GalEa, Hydra and CoMol. Among the eight BEL/Pao clades identified in annelids, two small clades within the Sailor lineage are new for science. We characterized 17 Gypsy clades of which only 4 are new; the C-clade largely dominates with a quarter of the families. Finally, all species also expressed for the majority two distinct transcripts encoding PIWI proteins, known to be involved in control of TEs mobilities. CONCLUSIONS: This study shows that the use of transcriptomes assembled from 40 million reads was sufficient to access to the diversity and proportion of the transposable elements compared to those obtained by low coverage sequencing. Among LTR-retrotransposons Gypsy elements were unequivocally dominant but results suggest that the number of Gypsy clades, although high, may be more limited than previously thought in metazoans. For BEL/Pao elements, the organization of clades within the Sailor lineage appears more difficult to establish clearly. The Copia elements remain rare and result from the evolutionary consistent success of the same three clades.

12.
BMC Biol ; 19(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407428

RESUMO

BACKGROUND: Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS: We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions. CONCLUSION: These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage.


Assuntos
Evolução Biológica , DNA de Protozoário/análise , Dinoflagelados/citologia , Dinoflagelados/genética , Organelas/fisiologia , Proteínas de Protozoários/análise , Sequência de Bases , Evolução Molecular , Íntrons/fisiologia
13.
Genomics ; 112(6): 4887-4896, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890702

RESUMO

Severe losses in aquacultured and wild hard clam (Mercenaria mercenaria) stocks have been previously reported in the northeastern United States due to a protistan parasite called QPX (Quahog Parasite Unknown). Previous work demonstrated that clam resistance to QPX is under genetic control. This study identifies single nucleotide polymorphism (SNP) associated with clam survivorship from two geographically segregated populations, both deployed in an enzootic site. The analysis contrasted samples collected before and after undergoing QPX-related mortalities and relied on a robust draft clam genome assembly. ~200 genes displayed significant variant enrichment at each sampling point in both populations, including 18 genes shared between both populations. Markers from both populations were identified in genes related to apoptosis pathways, protein-protein interaction, receptors, and signaling. This research begins to identify genetic markers associated with clam resistance to QPX disease, leading the way for the development of resistant clam stocks through marker-assisted selection.


Assuntos
Resistência à Doença/genética , Mercenaria , Doenças Parasitárias em Animais/genética , Animais , Genoma , Mercenaria/genética , Mercenaria/parasitologia , Parasitos , Polimorfismo de Nucleotídeo Único
14.
Front Microbiol ; 11: 600823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424803

RESUMO

Dinoflagellates are major components of phytoplankton that play critical roles in many microbial food webs, many of them being hosts of countless intracellular parasites. The phototrophic dinoflagellate Scrippsiella acuminata (Dinophyceae) can be infected by the microeukaryotic parasitoids Amoebophrya spp. (Syndiniales), some of which primarily target and digest the host nucleus. Early digestion of the nucleus at the beginning of the infection is expected to greatly impact the host metabolism, inducing the knockout of the organellar machineries that highly depend upon nuclear gene expression, such as the mitochondrial OXPHOS pathway and the plastid photosynthetic carbon fixation. However, previous studies have reported that chloroplasts remain functional in swimming host cells infected by Amoebophrya. We report here a multi-approach monitoring study of S. acuminata organelles over a complete infection cycle by nucleus-targeting Amoebophrya sp. strain A120. Our results show sustained and efficient photosystem II activity as a hallmark of functional chloroplast throughout the infection period despite the complete digestion of the host nucleus. We also report the importance played by light on parasite production, i.e., the amount of host biomass converted to parasite infective propagules. Using a differential gene expression analysis, we observed an apparent increase of all 3 mitochondrial and 9 out of the 11 plastidial genes involved in the electron transport chains (ETC) of the respiration pathways during the first stages of the infection. The longer resilience of organellar genes compared to those encoded by the nucleus suggests that both mitochondria and chloroplasts remain functional throughout most of the infection. This extended organelle functionality, along with higher parasite production under light conditions, suggests that host bioenergetic organelles likely benefit the parasite Amoebophrya sp. A120 and improve its fitness during the intracellular infective stage.

15.
Sci Adv ; 5(4): eaav1110, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31032404

RESUMO

Dinoflagellates are microbial eukaryotes that have exceptionally large nuclear genomes; however, their organelle genomes are small and fragmented and contain fewer genes than those of other eukaryotes. The genus Amoebophrya (Syndiniales) comprises endoparasites with high genetic diversity that can infect other dinoflagellates, such as those forming harmful algal blooms (e.g., Alexandrium). We sequenced the genome (~100 Mb) of Amoebophrya ceratii to investigate the early evolution of genomic characters in dinoflagellates. The A. ceratii genome encodes almost all essential biosynthetic pathways for self-sustaining cellular metabolism, suggesting a limited dependency on its host. Although dinoflagellates are thought to have descended from a photosynthetic ancestor, A. ceratii appears to have completely lost its plastid and nearly all genes of plastid origin. Functional mitochondria persist in all life stages of A. ceratii, but we found no evidence for the presence of a mitochondrial genome. Instead, all mitochondrial proteins appear to be lost or encoded in the A. ceratii nucleus.


Assuntos
Dinoflagelados/genética , Dinoflagelados/metabolismo , Genoma Mitocondrial , Mitocôndrias/fisiologia , Filogenia , Aerobiose , Núcleo Celular/genética , Análise por Conglomerados , DNA Complementar/metabolismo , Evolução Molecular , Biblioteca Gênica , Genoma , Funções Verossimilhança , Microscopia Confocal , Análise de Sequência de DNA
16.
Front Microbiol ; 9: 2251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333799

RESUMO

Understanding factors that generate, maintain, and constrain host-parasite associations is of major interest to biologists. Although little studied, many extremely virulent micro-eukaryotic parasites infecting microalgae have been reported in the marine plankton. This is the case for Amoebophrya, a diverse and highly widespread group of Syndiniales infecting and potentially controlling dinoflagellate populations. Here, we analyzed the time-scale gene expression of a complete infection cycle of two Amoebophrya strains infecting the same host (the dinoflagellate Scrippsiella acuminata), but diverging by their host range (one infecting a single host, the other infecting more than one species). Over two-thirds of genes showed two-fold differences in expression between at least two sampled stages of the Amoebophrya life cycle. Genes related to carbohydrate metabolism as well as signaling pathways involving proteases and transporters were overexpressed during the free-living stage of the parasitoid. Once inside the host, all genes related to transcription and translation pathways were actively expressed, suggesting the rapid and extensive protein translation needed following host-cell invasion. Finally, genes related to cellular division and components of the flagellum organization were overexpressed during the sporont stage. In order to gain a deeper understanding of the biological basis of the host-parasitoid interaction, we screened proteins involved in host-cell recognition, invasion, and protection against host-defense identified in model apicomplexan parasites. Very few of the genes encoding critical components of the parasitic lifestyle of apicomplexans could be unambiguously identified as highly expressed in Amoebophrya. Genes related to the oxidative stress response were identified as highly expressed in both parasitoid strains. Among them, the correlated expression of superoxide dismutase/ascorbate peroxidase in the specialist parasite was consistent with previous studies on Perkinsus marinus defense. However, this defense process could not be identified in the generalist Amoebophrya strain, suggesting the establishment of different strategies for parasite protection related to host specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...